

Presented by: Matthew Peyton

AE Faculty Consultant: **Richard Behr**

The Department of Architectural Engineering The Pennsylvania State University April 13th 2011

Hospital Patient Tower

Presentation Outline

- □ Introduction
 - Building Stats and Features
 - Location
 - Existing Structural Design
- Structural Depth Analysis
 - Proposal Review
 - Gravity System
 - Lateral System
- Breadth Topics
 - Proposal Review
 - Construction Management
 - Acoustical Study
- Recommendations & Conclusion
- Acknowledgments & Questions

- Building Stats and Features
- Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Hospital Patient Tower Virginia USA

Introduction

Matthew Peyton AE Senior Thesis 2011

Building Stats and Features

Location

Existing Structural Design

□ Structural Depth Analysis

Breadth Topics

Recommendations & Conclusion

Acknowledgments & Questions

Building Stats

Size: 216,000 s.f. Number of stories: 12 Above Grade Cost: \$161 Million Construction duration: Summer 2010 – Fall 2011

Building Features

roof.

canopy.

Hospital Patient Tower Virginia USA

- □ 174 private intensive care and medical/surgical rooms.
- □ 360° patient access for improved care.
- Two story atrium connected to the lobby with a living
- □ Cantilevered aluminum lovers with glazing as lobby

Matthew Peyton AE Senior Thesis 2011

- Building Stats & Features
- Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion

Acknowledgments & Questions

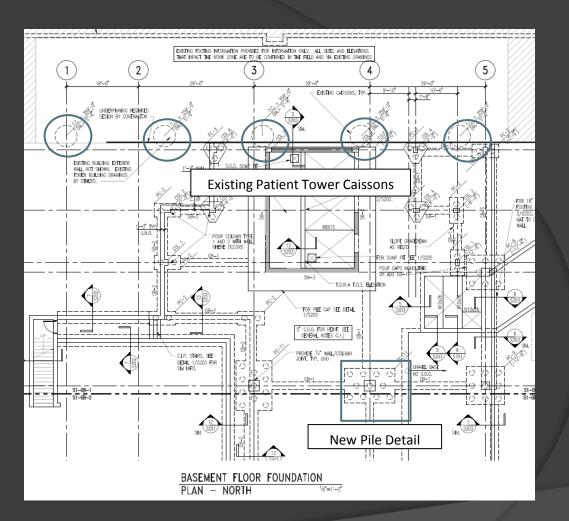
Building Location

- Existing Hospital Campus
- Northern Virginia
- Outside the Capital Beltway

Arlington Blvd 50

Matthew Peyton AE Senior Thesis 2011

- Building Stats & Features
- □ Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

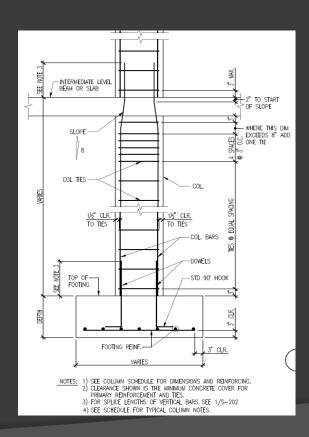

Foundation

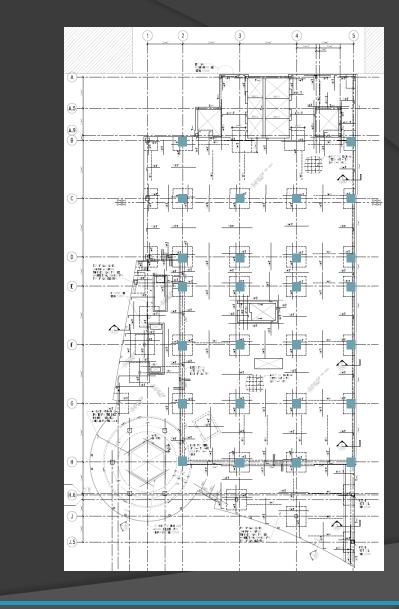
- Piles
- Grade beams □ 24" to 36" deep
- □ 5" Slab On Grade

Hospital Patient Tower Virginia USA

Existing Structural System

□ Drilled piles from 2 – 12 per column □ Pile caps pored monolithic with Slab.


Matthew Peyton AE Senior Thesis 2011


- □ Building Stats & Features
- □ Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Existing Structural System Gravity System

Hospital Patient Tower Virginia USA

□ Typical size 24" x 24" \Box 7,000 psi concrete floors 1 – 4 □ 5,000 psi concrete floors 5 – roof □ 6" deep column capitals

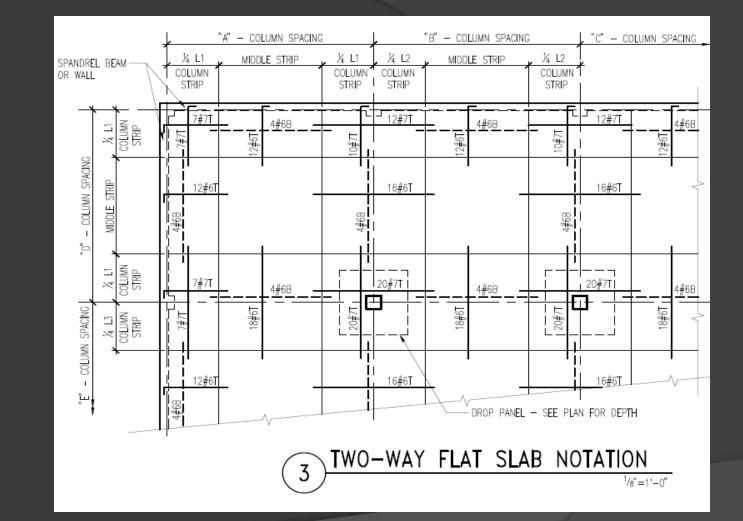
Matthew Peyton AE Senior Thesis 2011

- □ Building Stats & Features
- □ Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- □ Recommendations & Conclusion
- Acknowledgments & Questions

Existing Structural System Gravity System

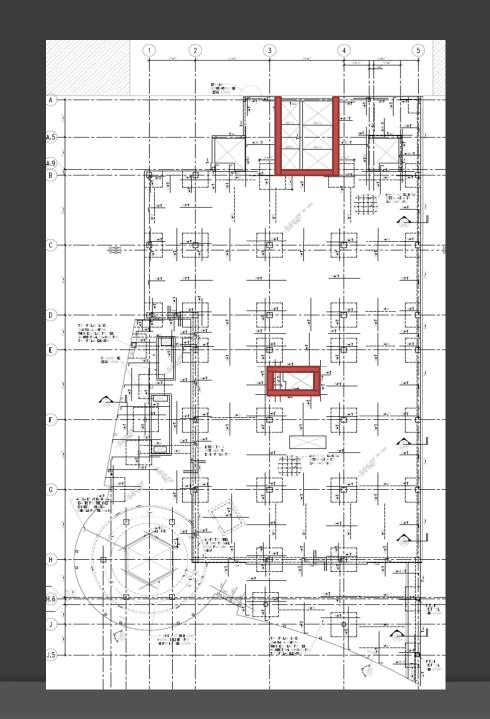
- □ Floor Slab

Hospital Patient Tower Virginia USA


□ 29' x 29' bays

□ 9.5" 2- Way flat plate.

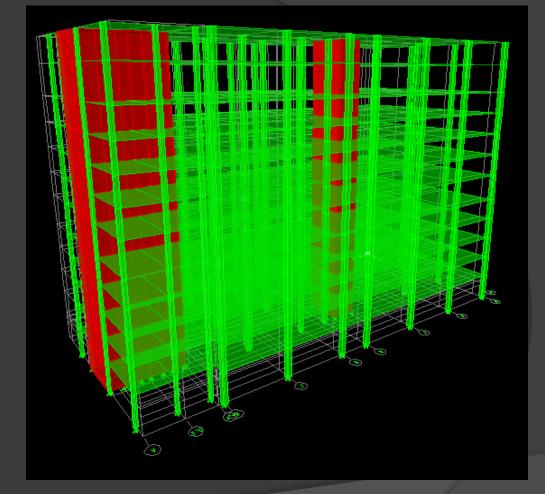
 \Box 5,000 psi concrete floors 1 – 4


□ 4,000 psi concrete floors 5 – roof

□ 10.5" thick slab for mechanical floor

Matthew Peyton AE Senior Thesis 2011

- Building Stats & Features
- Location
- Existing Structural Design
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions



Existing S

- Concrete moment frame
 Typical 24" x 24" concrete columns
 9.5" Two-way slab
- Reinforced concrete shear cores
 2 Shear cores
 Surrounding the stairs and the elevator
 12" thick reinforced concrete

Hospital Patient Tower Virginia USA

- **Existing Structural System**
- Lateral Force Resisting System

Matthew Peyton AE Senior Thesis 2011

Structural Depth Analysis Proposal Review Gravity System Lateral System

Breadth Topics

- Recommendations & Conclusion
- Acknowledgments & Questions

Structural Depth Analysis

Hospital Patient Tower Virginia USA

> Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
 Proposal Review
 Gravity System
 Lateral System
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Pronosa

Design a Steel Frame System with Composite Beam and Hollow core plank and lateral X bracing

Goals Deci

Decrease building weigh

Decrease total cost

□ Maintain the low floor to floor height

Hospital Patient Tower Virginia USA

Proposal Review

Decrease construction time

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
 Proposal Review
 Gravity System
 Lateral System
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Gravity S

□ W12 Steel Columns

□ Live loads in accordance with ASCE 7-10

□ Splices every 2 or 4 stories

□ Only W12's to increase shape redundancy

Design Design

Hospital Patient Tower Virginia USA

Gravity System Redesign - Column

Designed by hand and checked with an Etabs

Interior	С
Floor	
Roof	
11	
10	
9	
8	
7	
6	
5	
4	
3	
2	
1	

Matthew Peyton AE Senior Thesis 2011

Column Sizing

Column Size W12 x 50 W12 x 50 W12 x 50 W12 x 50 W12 x 79 W12 x 79 W12 x 79 W12 x 79 W12 x 120 W12 x 120 W12 x 120 W12 x 120

- Structural Depth Analysis Proposal Review Gravity System Lateral System
- Breadth Topics
- Recommendations & Conclusion
- □ Acknowledgments & Questions

- Advantages
- Disadvantage

Hospital Patient Tower Virginia USA

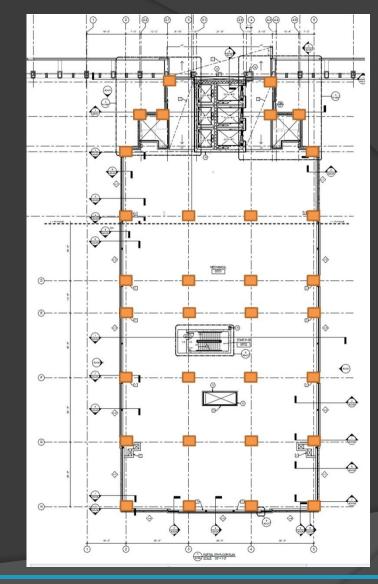
Gravity System Redesign - Column

• Lighter than concrete • Quicker erection than concrete

• Requires Fireproofing • More columns per floor

> Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System Lateral System
- Breadth Topics
- Recommendations & Conclusion
- □ Acknowledgments & Questions


Gravity System Redesign - Column

- □ Advantages
- Disadvantage

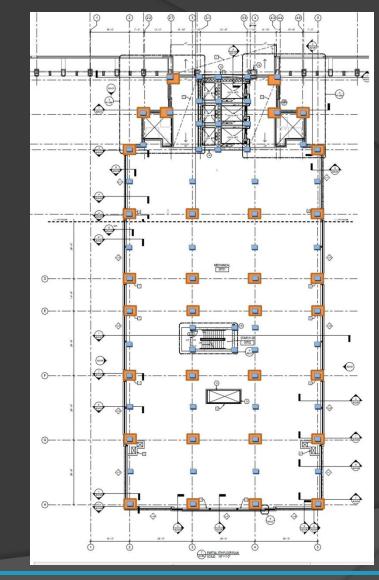
Hospital Patient Tower Virginia USA

 Lighter than concrete • Quicker erection than concrete

• Requires Fireproofing • More columns per floor

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System Lateral System
- Breadth Topics
- Recommendations & Conclusion
- □ Acknowledgments & Questions


Gravity System Redesign - Column

- Advantages
- Disadvantage

Hospital Patient Tower Virginia USA

 Lighter than concrete • Quicker erection than concrete

• Requires Fireproofing • More columns per floor

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System □ Lateral System
- Breadth Topics
- □ Recommendations & Conclusion
- □ Acknowledgments & Questions

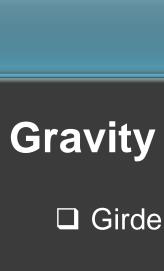
Hospital Patient Tower Virginia USA

Gravity System Redesign – Floor Slab

- Girder Slab system
- □ Composite action
- □ 8" Hollow core plank
- □ 2" Concrete topping
- Modified W flanges and top flange

• The grouting process is easily performed with a few tradesme The cement grout is liquefied and pumped through a hose. Workers puddle the grout in order to fill in the voids and slab cores.

• Unlike cast-in-place concrete structures, the Girder-Slab Syste is Assembled-In-Place.


• The underside of slab is read made for ceiling finish.

> • The innovative D-beam Girder was designed to allow the precast slab to set on its bottom flange concealing its top flange and web. No formwork or shoring is needed

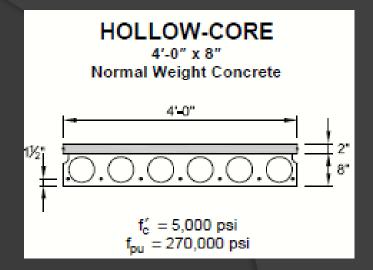
Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System Lateral System
- Breadth Topics
- □ Recommendations & Conclusion
- Acknowledgments & Questions

- □ 8" Hollow core plank
- □ 2" Concrete topping
- Modified W flanges and top flange

Hospital Patient Tower Virginia USA

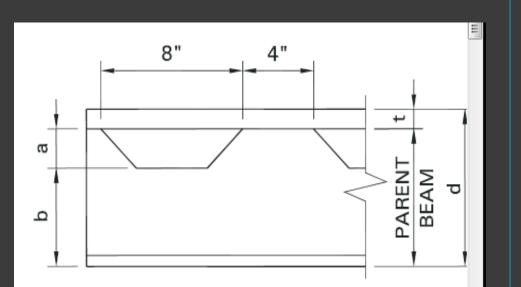
Gravity System Redesign - Floor Slab

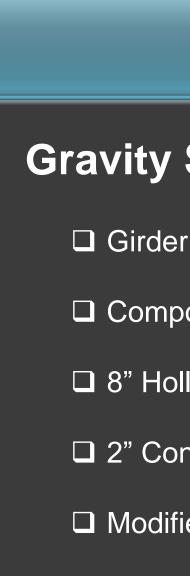

- Girder Slab system
- □ Composite action

Hollow core plank design

- \Box Live load = 80psf
- \Box Dead Load = 10psf
- □ SDL = 25
- □ Max span = 29"
- □ Normal weight concrete
- □ 2" concrete topping

Results from PCI Design Handbook □ 78 – S \Box 7 strands at 8/16" dia.


Matthew Peyton AE Senior Thesis 2011


Structural Depth Analysis
 Proposal Review
 Gravity System
 Lateral System

Breadth Topics

- Recommendations & Conclusion
- Acknowledgments & Questions

D-Beam[®] Reference Calculator is Available on Website. www.girder-slab.com

Hospital Patient Tower Virginia USA

Gravity System Redesign - Floor Slab

- Girder Slab system
- Composite action
- □ 8" Hollow core plank
- □ 2" Concrete topping
- Modified W flanges and top flange

	Web 1	Included	Depth	Web	Paren	t Bean	1	
Designation	Weight	Avg. Area	đ	Thickness t _w	Size	a	b	Top Bar w x t
	lb/ft	in ²	in	in		in	in	in x in
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System □ Lateral System
- □ Breadth Topics
- □ Recommendations & Conclusion
- Acknowledgments & Questions

Hospital Patient Tower Virginia USA

Gravity System Redesign – Floor Slab

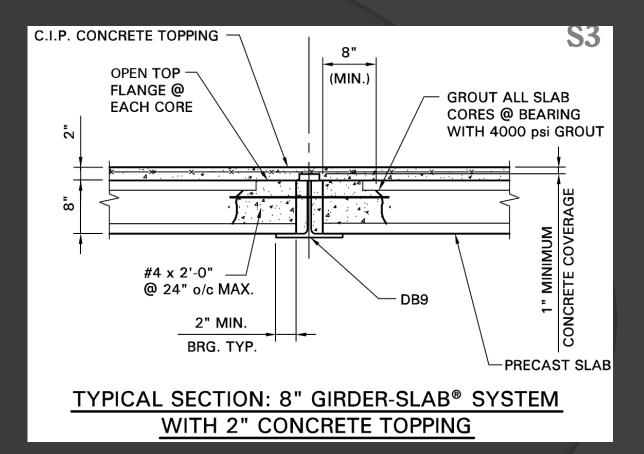
- Girder Slab system
- □ Composite action
- □ 8" Hollow core plank
- □ 2" Concrete topping
- Modified W flanges and top flange

D-beam design

- Initial Load Pre-composite \Box M_{DI} = 45.7ft-k < 84 ft-k
- □ Total Load Composite \Box M_{sup}= 92.5 $\Box M_{tl} = 138.2$ \Box S_{reg}= 55.3 < 68.6
- □ Superimposed Compressive Stress on Concrete \Box F_c= 2.25ksi > f_c=2.25ksi
- Bottom Flange Tension Stress Total Load \Box F_b= 45ksi > f_b= 24.6
- □ Shear Check \Box F_v=20ksi > f_v= 17.7ksi

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System Lateral System
- Breadth Topics
- □ Recommendations & Conclusion
- □ Acknowledgments & Questions


- Advantages
- Disadvantage

Hospital Patient Tower Virginia USA

Gravity System Redesign – Floor Slab

• Composite action • Low structural depth

• Short beam spans

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review Gravity System □ Lateral System
- Breadth Topics
- □ Recommendations & Conclusion
- □ Acknowledgments & Questions

Lateral System Redesign – Wind loads

□ ASCE 7-10 chapter 27 □ MWFRS Directional Procedure (Table 27.2-1)

Hospital Patient Tower Virginia USA

Location Parameters for Northern Virginia

Table 5 - Wind Load Parameters			
ectionality factor (k _d)	0.85		
e Category	В		
phic Factor (K _{zt})	1.0		
ect Factor (G)	0.85		
ind Speed	120 mph		

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis Proposal Review □ Gravity System □ Lateral System
- Breadth Topics
- □ Recommendations & Conclusion
- □ Acknowledgments & Questions

Lateral System Redesign – Seismic loads

Dead weight comparison Decrease in building dead weight from concrete to steel frame

Concrete

Hospital Patient Tower Virginia USA

Total Building Weight Comparison (kips)		
Frame with Shear walls	Steel Frame with Hollow core plank	
44,000	30,000	

Ground Parameters for site location

General Seisn	nic Information	
Occupancy		III
Site Class		D
Seismic Design Category		В
Short Period Spectral Response	Ss	13.5 % g
Spectral Response (1 Sec.)	S ₁	5.5% g
Maximum Short Period Spectral Response	S _{MS}	0.216
Maximum Spectral Response (1 Sec.)	S _{M1}	0.132
Design Short Spectral Response	S _{DS}	0.144
Design Spectral Response (1 Sec.)	S _{D1}	0.088
Response Modification Coefficient	R	3.25
Seismic Response Coefficient	Cs	0.0218

□ ASCE 7-10 chapter 11,12, 20-22

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
 Proposal Review
 Gravity System
 Lateral System
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

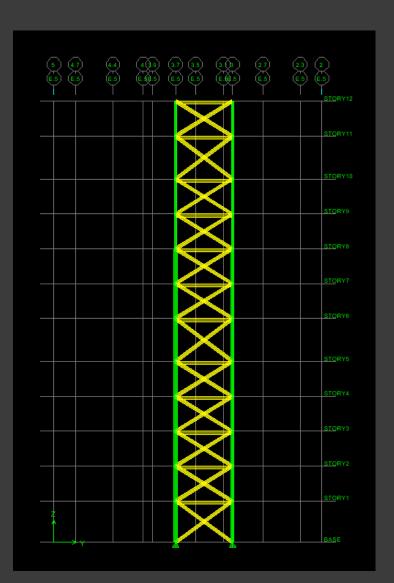
Controlling Lateral Load Case

East – We
North – So

CasesLocationLoadBaseBaseTorsionalOverturningOverturningMoment, MyCase 1BaseWX-441.60230515.20-437029Case 1BaseWX-441.60230515.20-437029Case 1BaseWY0-744.4-851966746575.20Case 2BaseWX-33201196520-329248Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568SeismicBaseQX-649.90373398.90-783801	Lateral Load Cases							
V x (k)V y (k)(ft-k)(ft-k)(ft-k)Case 1BaseWX-441.60230515.20-437029Case 1BaseWY0-744.4-851966746575.200Case 2BaseWX-33201196520-329248Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568				Base	Base	Torsional	Overturning	Overturning
Case 1BaseWX-441.60230515.20-437029Case 1BaseWY0-744.4-851966746575.20Case 2BaseWX-33201196520-329248Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568	Cases	Location	Load	Shear,	Shear,	Moment, M _z	Moment, M _x	Moment, M _y
Case 1BaseWY0-744.4-851966746575.20Case 2BaseWX-33201196520-329248Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568				V _x (k)	$V_{y}(k)$	(ft-k)	(ft-k)	(ft-k)
Case 2BaseWX-33201196520-329248Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568	Case 1	Base	WX	-441.6	0	230515.2	0	-437029
Case 2BaseWY0-559-8317645593980Case 3BaseWXY-332-559-466472559398-329248Case 4BaseWXY-248-419-453902419822-245568	Case 1	Base	WY	0	-744.4	-851966	746575.2	0
Case 3 Base WXY -332 -559 -466472 559398 -329248 Case 4 Base WXY -248 -419 -453902 419822 -245568	Case 2	Base	WX	-332	0	119652	0	-329248
Case 4 Base WXY -248 -419 -453902 419822 -245568	Case 2	Base	WY	0	-559	-831764	559398	0
	Case 3	Base	WXY	-332	-559	-466472	559398	-329248
Seismic Base QX -649.9 0 373398.9 0 -783801	Case 4	Base	WXY	-248	-419	-453902	419822	-245568
	Seismic	Base	QX	-649.9	0	373398.9	0	-783801
Seismic Base QY 0 -649.9 -790728 783800.6 0	Seismic	Base	QY	0	-649.9	-790728	783800.6	0

Hospital Patient Tower Virginia USA

Lateral System Redesign


est direction Wind Case 1 controls outh direction Seismic controls

Matthew Peyton AE Senior Thesis 2011

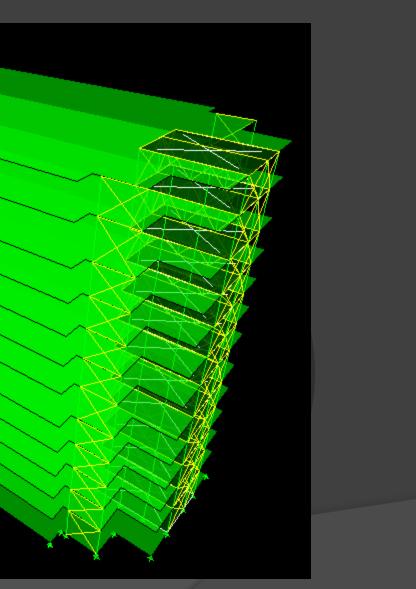
Structural Depth Analysis Proposal Review □ Gravity System □ Lateral System

Breadth Topics

- Recommendations & Conclusion
- □ Acknowledgments & Questions

Hospital Patient Tower Virginia USA

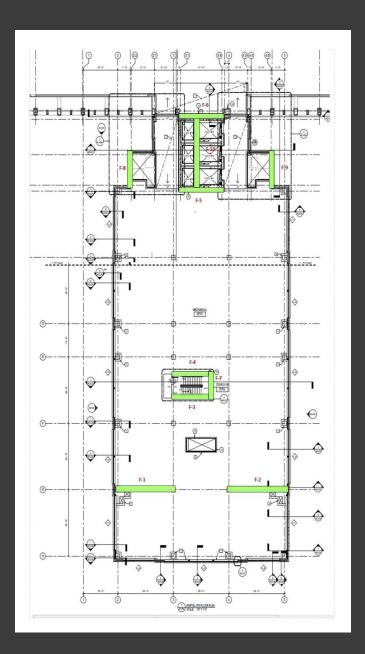
Lateral System Redesign

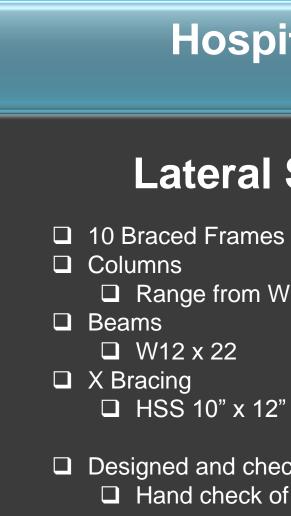

□ Braced frames will take full lateral loads

□ Floors modeled as rigid diaphragms

□ Lateral loads distributed based on relative stiffness of each wall

Gravity loads added as additional area mass to the diaphragms

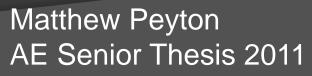

> Matthew Peyton AE Senior Thesis 2011

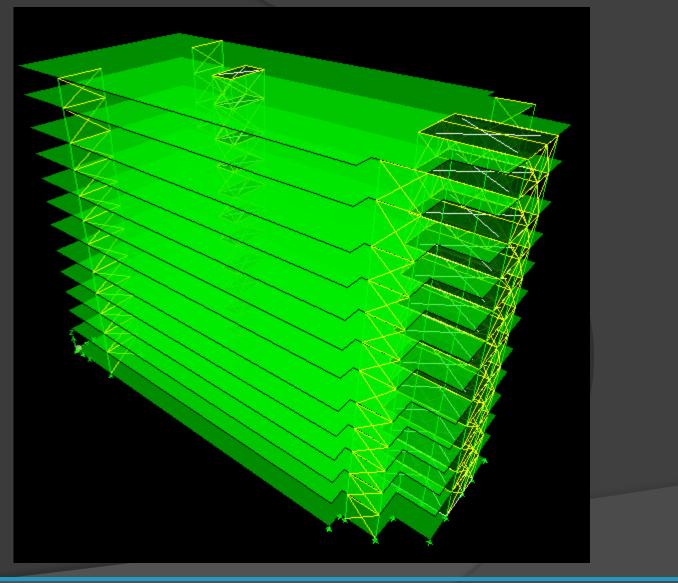


Structural Depth Analysis Proposal Review □ Gravity System □ Lateral System

Breadth Topics

- Recommendations & Conclusion
- □ Acknowledgments & Questions


Hospital Patient Tower Virginia USA


Lateral System Redesign

□ Range from W12 x 120 – W12 x 50

□ W12 x 22 □ HSS 10" x 12" x 0.5"

Designed and checked with ETABS model □ Hand check of relative stiffness

- Structural Depth Analysis Proposal Review Gravity System □ Lateral System
- Breadth Topics
- Recommendations & Conclusion
- □ Acknowledgments & Questions

Lateral Drift

Hospital Patient Tower Virginia USA

Lateral System Redesign

Drift Limitations □ Wind – H/400 □ Seismic – 0.02h

 Controlling load combination □ 0.9D + 1.0E

Diaphragm CM Displacements

Edit View

9	story	Diaphragm	Load	UX	UY	UZ
ST	ORY12	D1	COMB1	-0.0026	-0.0145	0.0000
ST	ORY12	D1	COMB2	-0.0022	-0.0124	0.0000
ST	ORY12	D1	COMB3	0.7116	-0.0214	0.0000
ST	ORY12	D1	COMB4	-0.0140	1.8134	0.0000
ST	ORY12	D1	COMB5	1.4254	-0.0304	0.0000
ST	ORY12	D1	COMB6	-0.0258	3.6392	0.0000
ST	ORY12	D1	COMB7	2.7230	0.0153	0.0000
ST	ORY12	D1	COMB8	-0.0170	4.0237	0.0000
ST	ORY12	D1	COMB9	1.4260	-0.0273	0.0000
ST	ORY12	D1	COMB10	-0.0253	3.6423	0.0000
ST	ORY12	D1	COMB11	2.7235	0.0184	0.0000
ST	ORY12	D1	COMB12	-0.0164	4.0268	0.0000
ST	ORY12	D1	COMB13	-0.0022	-0.0124	0.0000
CT	007/44	D4	DEAD	0.0016	0.0001	0.0000

Matthew Peyton AE Senior Thesis 2011

Diaphragm CM Displacements

- Structural Depth Analysis
- Breadth Topics
 - Proposal Review Construction Management
- □ Recommendations & Conclusion
- Acknowledgments & Questions

Hospital Patient Tower Virginia USA

Breadth Topics

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
 Proposal Review
 Construction Management
- Recommendations & Conclusion
- Acknowledgments & Questions

Analysis steel frame construction schedule

Check the acoustical criteria for the Intensive care units

Hospital Patient Tower Virginia USA

Proposal Review

Compare structural system costs

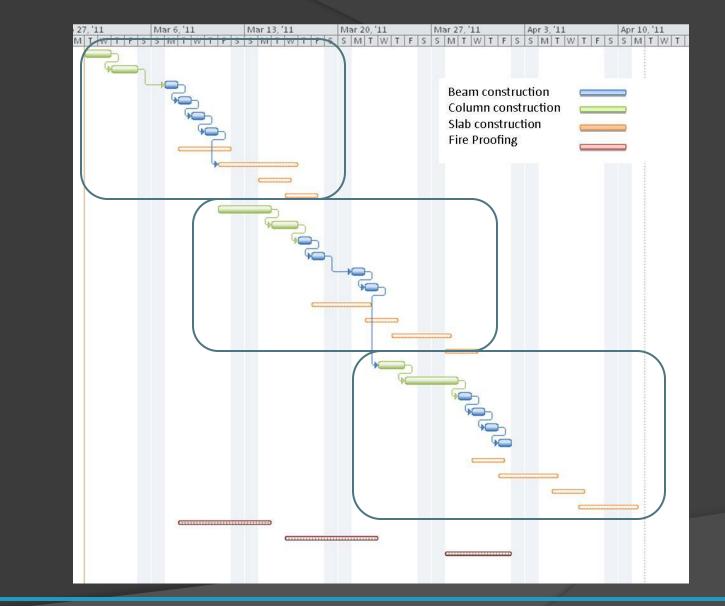
Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
 Proposal Review
 Construction Management
- Recommendations & Conclusion
- Acknowledgments & Questions

Schedule of Phase 1

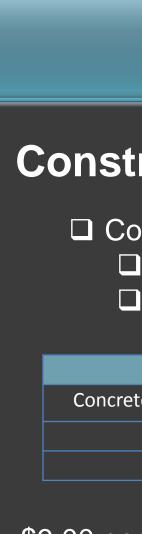
Task 🖕 Mode	Task Name 👻	Duration 💂	Start 👻	Finish 👻
3	Column lines H-EL1-4	2 days	Tue 3/1/11	Wed 3/2/11
3	Column lines D-A L1-4	2 days	Thu 3/3/11	Fri 3/4/11
3	Beam Level 1	1 day	Mon 3/7/11	Mon 3/7/11
3	Beam Level 2	1 day	Tue 3/8/11	Tue 3/8/11
3	Beam Level 3	1 day	Wed 3/9/11	Wed 3/9/11
3	Beam Level 4	1 day	Thu 3/10/11	Thu 3/10/11
3	Plank Level 1	4 days	Tue 3/8/11	Fri 3/11/11
3	Plank Level 2	4 days	Fri 3/11/11	Wed 3/16/11
3	Plank Level 3	2.5 days	Mon 3/14/11	Wed 3/16/11
3	Plank Level 4	2.5 days	Wed 3/16/11	Fri 3/18/11
		a 1	e i staataa	10 la a la a

Construction Management – Schedule


Scheduled using RS means 2011 Data
 Constructed in 3 Phases
 2 Erection crews
 Task overlapping

Concrete

3.5 month decrease in construction time


Hospital Patient Tower Virginia USA

Structural Erection Tir	ne comparison (# days)
Frame with Shear walls	Steel Frame with Hollow core plank
97	24

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
 Proposal Review
 Construction Management
- Recommendations & Conclusion
- Acknowledgments & Questions

Hospital Patient Tower Virginia USA

Construction Management – Cost

Cost using RS means 2011 Assemblies Data
 2 way reinforced concrete slab
 Hollow core plank and steel beams

Comparison
Steel Frame with Hollow core plank
\$ 27/sf
\$ 6,000,000

\$9.00 per s.f. increase in the cost of the structure 2 million dollar increase in total cost.

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics Proposal Review Construction Management
- Recommendations & Conclusion
- Acknowledgments & Questions

Construction Management – Summary

Summary

2 million dollar increase in up front cost

□ 3.5 month decrease in construction time

Average revenue for a hospital would at least match the up front cost

Hospital Patient Tower Virginia USA

Matthew Peyton AE Senior Thesis 2011

- □ Introduction
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Recommendations & Conclusion

Hospital Patient Tower Virginia USA

> Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Hospital Patient Tower Virginia USA

Goals

- Decrease construction time
- Decrease building weight
- Decrease total cost
- Maintain the low floor to floor height

Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

After much consideration I feel that the proposed steel frame and girder slab system would be a feasible alternative to the existing cast in place concrete structure but I don't not feel that either system is with out its cons.

Hospital Patient Tower Virginia USA

Conclusion

Matthew Peyton AE Senior Thesis 2011

- □ Introduction
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Acknowledgments & Questions

Hospital Patient Tower Virginia USA

> Matthew Peyton AE Senior Thesis 2011

- Structural Depth Analysis
- Breadth Topics
- □ Recommendations & Conclusion
- Acknowledgments & Questions

Acknowledgment's

Professor Bob Holland – Senior Thesis Instructor Professor Kevin Parfitt – Senior Thesis Instructor Professor Richard Behr – AE faculty consultant

The Faculty and Staff of the Penn State AE department

Frank Malits – Cagley & Associates Joan Dannemann – Inova Design and Construction Department

Lastly, I would like to extend my gratitude to my family and friends for their unconditional support and encouragement.

Hospital Patient Tower Virginia USA

Matthew Peyton AE Senior Thesis 2011

- Introduction
- Structural Depth Analysis
- Breadth Topics
- Recommendations & Conclusion
- Acknowledgments & Questions

Questions ??

Hospital Patient Tower Virginia USA

Questions ??

Matthew Peyton AE Senior Thesis 2011

